### Decision Dashboard

Yihua Zheng and the SWRC team

### Current Structure

grouped by domains

#### **SOLAR**

- GOES 0.1–0.8 nm X-rays CURRENT STATE
- SOHO LASCO C3 imagery CURRENT STATE
- STEREO A and B COR2 imagery CURRENT STATE
- Cone/WSA/ENLIL simulations CURRENT STATE

#### **HELIOSPHERE**

- STEREO A and B high-energy protons CURRENT STATE
- SOHO high-energy protons CURRENT STATE
- GOES high-energy protons CURRENT STATE
- RELEASE forecast for high-energy protons CURRENT STATE
- Significant interplanetary shock at L1 CURRENT STATE

#### **MAGNETOSPHERE**

- Kp index CURRENT STATE
- GOES high-energy electrons CURRENT STATE
- Modeled magnetopause standoff distance CURRENT STATE

#### **Weekly Space Weather Summary Report**

### Alternative Structure

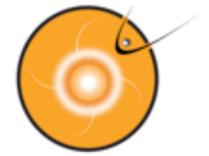
- Grouped together by storm categories/physical phenomena
  Radio blackout storms (major flare alert)
  - data: GOES 0.1-0.8 nm X-rays
  - Threshold: M5.0 (x-ray flux  $\geq 5.e-5$  w/m<sup>2</sup>)
- CME alert
  - data: coronagraph images (SOHO, STEREO A, B) and other auxiliary CME relevant data (type II radio burst)
  - tool WSA+ENLIL+Cone (instruction)
  - threshold: Earth-directed > 500 km/s else where
     > 1000 km/s or there is enhancement in SEP

### Radiation storms

(of Solar Origin, associated with flare/CME)

- SEP (solar energetic particles)
  - data: STEREO A, B high energy proton flux 13-100 MeV proton flux exceeds 0.1 pfu/MeV
  - GOES high energy proton fluxes
    - > 10 MeV proton flux exceeds 10 pfu
    - > 100 MeV proton flux exceeds I pfu
  - RELeASE Forecast for high-energy protons (model result)

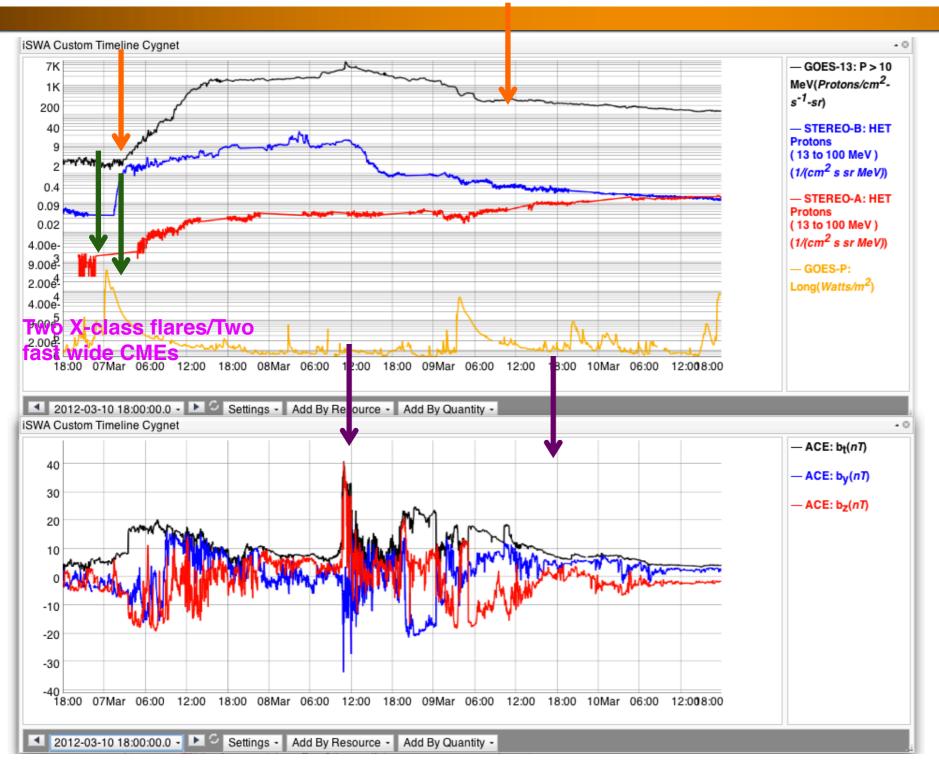
### Interplanetary Shock arrival at LI (ACE) CME follow-on


- follow-up on significant Earth-directed
   CMEs
- prelude to a potential geomagnetic storm

## Modeled magnetopause standoff distance alert trigger - mostly CMEs

- Model result
- threshold r0< 6.6 RE</li>
- follow-up on CMEs that have strong solar wind-magnetosphere coupling effects

### Geomagnetic Storm


- monitoring Kp
- $K_{p} >= 6$
- can be caused by CME or CIR
  - CIR geomagnetic storm Kp <=6</li>



### **Space Weather Effects and Timeline**



(Flare and CME)



Flare effects at Earth:
~ 8 minutes (radio blackout storms)
Duration: minutes to hours

SEP radiation effects reaching Earth: 20 minutes – 1hour after the event onset

**Duration: a few days** 

CME effects arrives @ Earth: 1-2 days (35 hours here)

Geomagnetic storms: a couple of days

# Radiation Storms due to electrons in the Van Allen Radiation belt (in the near-Earth environment)

- heart of the radiation belt 3 4.5 RE
- CME storms peak fluxes closer to Earth
- CIR storms peak fluxes further from Earth
- real-time data streams only at GEO (GOES data)
- threshold: the GOES >0.8 MeV electron flux >10^5 pfu
  - trigger: mainly due to CIR HSS storms
- SWx beacon data from van Allen probes improve the situation

# Auxiliary data of CME

### Type II radio emission

- Space Weather Message Code: ALTTP2
- Serial Number: 856
- Issue Time: 2013 May 22 1344 UTC
- ALERT: Type II Radio Emission
- Begin Time: 2013 May 22 1259 UTC
- Estimated Velocity: 1237 km/s
- Description: Type II emissions occur in association with eruptions on the sun and typically indicate a coronal mass ejection is associated with a flare event.

# Type V radio emission • Space Weather Message Code: ALTTP4

- Serial Number: 417
- Issue Time: 2013 May 22 1530 UTC

- ALERT: Type IV Radio Emission
- Begin Time: 2013 May 22 1303 UTC

Description: Type IV emissions occur in association with major eruptions on the sun and are typically associated with strong coronal mass ejections and solar radiation storms.